Verilog by Example, errata

The venlog code on the oppoute page, although also
functionally equivalent to the previous code, now reflects a different
and more compact way of representing the muluplexer function.
We here introduce venlog’s combinatonial conditional construct,

ﬂlmunﬂnng the “in 3 bus” intermediate signal of the previnus
lae process. The assign statement reads as such: “when

¢ select control) is lugh, select in_2, else select in_1."
very much lbke a hnuted version of the fanubar
IF/THEN statement of other languages.

page 12

Verilog by Example, errata

All of the combinatonial and bus reconstruction shown in the
module above i1s implemented in one assignment in the code on the
opposite page. Here we mtroduce bus concatenation, which 1s
defined by a single set of braces. I have arranged the concatenation
elements vertically on separate lines for clarity, but they could all be
mcluded on the same (albeit somewhat long) line, still separated by
@ ement 1s always first (1.e., next to the

ement 1s always last (next to the
‘otice alsg that the first and last elements here
7, and that the two muddle elements (each one bit)
combinatorial pperations.

commas. ~Note that th
left-most brace), wh

right-most brace.

comprise two bi
are the result o

“most significant” least significant

page 14

Verilog by Example, errata

The body of the always-block has now become more

complicated as we introduce it T conditiié)nal stateme to
tume “reset” Jaus lugh, “out_17)

forced to zero. Since this happe

accommodate the reset. Au}*

as soo1n as reset gOEs ive

(reset 1s part of the sensitivity list), and at every nsing clock edge,
you can see that tlhus etfects an asynchronous clear. When reset 1s

page 20

Verilog by Example, errata

Verilog by Example

We now introduce a few common state-type operations to show
how increasmngly soplusticated register-based functions are
implemented m always-blocks. A four-bit counter 1s enabled by a
“start” event, and stopped by a “stop” event. The SR flop allows
the start and stop ev 1o1t, e.g. one-clock pulses, rather

Thuis 1s done for clanty; from tlus point forward it 1s assumed. It is

implemented in the code, and always will be (in thus book).

start > 5 cnt_en
stop >l
[o count[3:0] o
clk > modulo 14
stopTd1 stop d2
Reg| |Reg = >

e

clks n regs 4

SR flop and counter

page 24

Verilog by Example, errata

FLILLTEELEREELL LS L LI L L LR EErLlllrlr e/
// SR flop and counter

LHHEETELELELEL T F i L i LT Eii il il f

module srflnp=p=cntr (clk,
reset,

start,
stop,
count

input clk;
input reset;
input start;

(= r
output [3:0] count;
output stop d2;

cnt_en;

reg [3- -

reg stop_dl;

reg stop d2;

/[===——- Design implementation -----

// SR flop

always @(posedge clk or posedge reset)
begin

if (reset)
cnt_en <= 1'b0;
else if (start)
cnt_en <= 1'bl;
else if (stop)
cnt_en <= 1'b0;
end

page 25

Verilog by Example, errata

end
endmodule

SR flop and counter

The last always-block mmplements the two sequential delays.
The points to note here are that multiple register signals can be
grouped mnto the same always-block (when it makes sense), and that
additional begin/end block boundaries are needed around each pair
of signal assignments. Without these, the esis software mught
iterpret, for example, that “stop_d2 &=
with the “else,” but stands alone.

Finally, we should note that the three always-blocks could be

—1 1s\ot associated
stop dl

collected together into one. This 1s shown on the next page.

26

page 26

Verilog by Example, errata

LHLEEES TP E TP E LT/
// Single-port Memory

module single port mem
(clk,
reset,
data 1o,
address,
Wr ern,

rd

) 2

input clk;
input reset;
inout 15:0] data io; //new I/O type

input S5:0] address;

input Wwr _en;
input rd;
reg [15:0] b 38 H
reg [15:0] dat—eut; data out
reqg ~dl;
/] =———— Design implementation —-----
// Memory
[/
always @(posedge clk)
begin

if (wr en)

m [address] <= data io;
data out _dat—ouUt)= memory[address];
— rd = rd;

end

assign data 1o = rd dl ? data out : l1lé'bz;

endmodule

Single-pnrt Memory

page 57

Verilog by Example, errata

FILLELL AT EE LTRSS P i r s
[/ Clock Buffer

module clﬁck_buffer

[reset,
clk arn;
dat:in,
dat out
) i
input reset;
input ¢k ;clk in
input dat in;
output dat:ﬁut:
wire clk:
redq dat out;

page 60

Verilog by Example, errata

signed values: Verilog-2001 added “signed> es tQ Legs
constants. Tlus defines the value as signed, t@m&n&ﬂﬁ
signed reg declaration mught look like:
reg signed [31:0] data wval;
and a signed constant nught be:
parameter signed [7:0] WIDTH = 8'h56;
Inputs and outputs associated with signed regs would be:
input signed [31:0] data wval;
coutput signed [31:0] data wval;

page 109

